重要进展:清华大学开发出理想的极紫外(EUV)光刻胶材料

内容摘要IT之家 7 月 26 日消息,随着集成电路工艺向 7nm 及以下节点不断推进,13.5 nm 波长的 EUV 光刻成为实现先进芯片制造的核心技术。但 EUV 光源反射损耗大、亮度低等特点,对光刻胶在吸收效率、反应机制和缺陷控制等方面提出了

联系电话:400-962-3929

IT之家 7 月 26 日消息,随着集成电路工艺向 7nm 及以下节点不断推进,13.5 nm 波长的 EUV 光刻成为实现先进芯片制造的核心技术。但 EUV 光源反射损耗大、亮度低等特点,对光刻胶在吸收效率、反应机制和缺陷控制等方面提出了更高挑战。

清华大学宣布,该校化学系许华平教授团队在极紫外(EUV)光刻材料上取得重要进展 —— 开发出一种基于聚碲氧烷(Polytelluoxane, PTeO)的新型光刻胶,为先进半导体制造中的关键材料提供了新的设计策略。

▲ 聚碲氧烷:理想的 EUV 光刻胶材料

IT之家查询发现,相关成果已于 7 月 16 日发表在《科学进展》上。

该研究提供了一种融合高吸收元素 Te、主链断裂机制与材料均一性的光刻胶设计路径,有望推动下一代 EUV 光刻材料的发展,助力先进半导体工艺技术革新。

清华表示,当前主流 EUV 光刻胶多依赖化学放大机制或金属敏化团簇来提升灵敏度,但常面临结构复杂、组分分布不均、反应容易扩散,容易引入随机缺陷等问题。

如何突破这些瓶颈,构建理想光刻胶体系,成为当前 EUV 光刻材料领域的核心挑战。学界普遍认为,理想的 EUV 光刻胶应同时具备以下四项关键要素:

1)高 EUV 吸收能力,以减少曝光剂量,提升灵敏度;

2)高能量利用效率,确保光能在小体积内高效转化为光刻胶材料溶解度的变化;

3)分子尺度的均一性,避免组分随机分布与扩散带来的缺陷噪声;

4)尽可能小的构筑单元,以消除基元特征尺寸对分辨率的影响,减小线边缘粗糙度(LER)。

长期以来,鲜有材料体系能够同时满足这四个标准。现在,许华平教授课题组基于团队早期发明的聚碲氧烷开发出一种全新的 EUV 光刻胶,满足了上述理想光刻胶的条件。

在该项研究中,团队将高 EUV 吸收元素碲(Te)通过 Te─O 键直接引入高分子骨架中。碲具有除惰性气体元素氙(Xe)、氡(Rn)和放射性元素砹(At)之外最高的 EUV 吸收截面,EUV 吸收能力远高于传统光刻胶中的短周期元素和 Zn、Zr、Hf 和 Sn 等金属元素,显著提升了光刻胶的 EUV 吸收效率。

同时,Te─O 键较低的解离能使其在吸收 EUV 后可直接发生主链断裂,诱导溶解度变化,从而实现高灵敏度的正性显影。这一光刻胶仅由单组份小分子聚合而成,在极简的设计下实现了理想光刻胶特性的整合,为构建下一代 EUV 光刻胶提供了清晰而可行的路径。

 
举报 收藏 打赏 评论 0
今日推荐
浙ICP备19001410号-1

免责声明

本网站(以下简称“本站”)提供的内容来源于互联网收集或转载,仅供用户参考,不代表本站立场。本站不对内容的准确性、真实性或合法性承担责任。我们致力于保护知识产权,尊重所有合法权益,但由于互联网内容的开放性,本站无法核实所有资料,请用户自行判断其可靠性。

如您认为本站内容侵犯您的合法权益,请通过电子邮件与我们联系:675867094@qq.com。请提供相关证明材料,以便核实处理。收到投诉后,我们将尽快审查并在必要时采取适当措施(包括但不限于删除侵权内容)。本站内容均为互联网整理汇编,观点仅供参考,本站不承担任何责任。请谨慎决策,如发现涉嫌侵权或违法内容,请及时联系我们,核实后本站将立即处理。感谢您的理解与配合。

合作联系方式

如有合作或其他相关事宜,欢迎通过以下方式与我们联系: