SIGGRAPH 2025|Large Avatar Model:单图秒级打造超写实3D交互数字人,跨平台超实时驱动渲染

内容摘要SIGGRAPH 2025|Large Avatar Model:单图秒级打造超写实3D交互数字人,跨平台超实时驱动渲染论文作者来自阿里巴巴通义实验室的 3D 团队。第一作者何益升,本科毕业于武汉大学,博士毕业于香港科技大学;通讯作者原玮

联系电话:400-962-3929

SIGGRAPH 2025|Large Avatar Model:单图秒级打造超写实3D交互数字人,跨平台超实时驱动渲染

论文作者来自阿里巴巴通义实验室的 3D 团队。第一作者何益升,本科毕业于武汉大学,博士毕业于香港科技大学;通讯作者原玮浩,本科毕业于浙江大学,博士毕业于香港科技大学;团队 董子龙,本科博士均毕业于浙江大学。

三维数字头像的建模、驱动和渲染是计算机图形学与计算机视觉的重要课题之一,在虚拟会议、影视制作、游戏开发等领域有广泛应用。传统方法依赖多视角数据或视频序列训练,存在计算成本高、输入条件难、泛化能力弱等问题。

近年来,基于神经辐射场(NeRF)和 3D 高斯溅射(Gaussian Splatting)的技术虽提升了建模质量,但仍面临多视角/视频输入训练的依赖以及神经后处理导致的渲染效率低的问题。

LAM(Large Avatar Model)的提出,旨在通过单张图像实现实时可驱动的 3D 高斯头像生成,突破传统方法对视频数据或复杂后处理的依赖,为轻量化、跨平台的 3D 数字人应用提供新思路。

论文标题:LAM:Large Avatar Model for One-shot Animatable Gaussian Head

论文地址:abs/2502.17796

项目主页: projects/LAM

代码库:aigc3d/LAM

国外 Demo:spaces/3DAIGC/LAM

国内 Demo:studios/Damo_XR_Lab/LAM_Large_Avatar_Model

核心亮点:

 
举报 收藏 打赏 评论 0
今日推荐
浙ICP备19001410号-1

免责声明

本网站(以下简称“本站”)提供的内容来源于互联网收集或转载,仅供用户参考,不代表本站立场。本站不对内容的准确性、真实性或合法性承担责任。我们致力于保护知识产权,尊重所有合法权益,但由于互联网内容的开放性,本站无法核实所有资料,请用户自行判断其可靠性。

如您认为本站内容侵犯您的合法权益,请通过电子邮件与我们联系:675867094@qq.com。请提供相关证明材料,以便核实处理。收到投诉后,我们将尽快审查并在必要时采取适当措施(包括但不限于删除侵权内容)。本站内容均为互联网整理汇编,观点仅供参考,本站不承担任何责任。请谨慎决策,如发现涉嫌侵权或违法内容,请及时联系我们,核实后本站将立即处理。感谢您的理解与配合。

合作联系方式

如有合作或其他相关事宜,欢迎通过以下方式与我们联系: