英伟达合作推出 Fast

内容摘要IT之家 6 月 3 日消息,科技媒体 marktechpost 昨日(6 月 2 日)发布博文,报道称英伟达联合麻省理工学院(MIT)、香港大学,合作推出 Fast-dLLM 框架,大幅提升扩散模型(Diffusion-based LLM

联系电话:400-962-3929

IT之家 6 月 3 日消息,科技媒体 marktechpost 昨日(6 月 2 日)发布博文,报道称英伟达联合麻省理工学院(MIT)、香港大学,合作推出 Fast-dLLM 框架,大幅提升扩散模型(Diffusion-based LLMs)的推理速度。

扩散模型被认为是传统自回归模型(Autoregressive Models)的有力竞争者,采用双向注意力机制(Bidirectional Attention Mechanisms),理论上能通过同步生成多个词元(Multi-token Generation)加速解码过程。

不过在实际应用中,扩散模型的推理速度往往无法媲美自回归模型,每次生成步骤都需要重复计算全部注意力状态,导致计算成本高昂。此外,多词元同步解码时,词元间的依赖关系易被破坏,生成质量下降,让其难以满足实际需求。

IT之家援引博文介绍,英伟达组建的联合团队为解决上述瓶颈,研发了 Fast-dLLM 框架。该框架引入两大创新:块状近似 KV 缓存机制和置信度感知并行解码策略。

KV 缓存通过将序列划分为块(Blocks),预计算并存储其他块的激活值(KV Activations),在后续解码中重复利用,显著减少计算冗余。其 DualCache 版本进一步缓存前后缀词元(Prefix and Suffix Tokens),利用相邻推理步骤的高相似性提升效率。

而置信度解码则根据设定的阈值(Confidence Threshold),选择性解码高置信度的词元,避免同步采样带来的依赖冲突,确保生成质量。

Fast-dLLM 在多项基准测试中展现了惊人表现。在 GSM8K 数据集上,生成长度为 1024 词元时,其 8-shot 配置下实现了 27.6 倍加速,准确率达 76.0%;在 MATH 基准测试中,加速倍数为 6.5 倍,准确率约为 39.3%;在 Humaneval 和 MBPP 测试中,分别实现了 3.2 倍和 7.8 倍加速,准确率维持在 54.3% 和基线水平附近。

整体来看,Fast-dLLM 在加速的同时,准确率仅下降 1-2 个百分点,证明其有效平衡速度与质量。这项研究通过解决推理效率和解码质量问题,让扩散模型在实际语言生成任务中具备了与自回归模型竞争的实力,为未来广泛应用奠定了基础。

IT之家附上参考地址

Fast-dLLM: Training-free Acceleration of Diffusion LLM by Enabling KV Cache and Parallel Decoding 论文

Fast-dLLM: Training-free Acceleration of Diffusion LLM by Enabling KV Cache and Parallel Decoding 项目界面

 
举报 收藏 打赏 评论 0
今日推荐
浙ICP备19001410号-1

免责声明

本网站(以下简称“本站”)提供的内容来源于互联网收集或转载,仅供用户参考,不代表本站立场。本站不对内容的准确性、真实性或合法性承担责任。我们致力于保护知识产权,尊重所有合法权益,但由于互联网内容的开放性,本站无法核实所有资料,请用户自行判断其可靠性。

如您认为本站内容侵犯您的合法权益,请通过电子邮件与我们联系:675867094@qq.com。请提供相关证明材料,以便核实处理。收到投诉后,我们将尽快审查并在必要时采取适当措施(包括但不限于删除侵权内容)。本站内容均为互联网整理汇编,观点仅供参考,本站不承担任何责任。请谨慎决策,如发现涉嫌侵权或违法内容,请及时联系我们,核实后本站将立即处理。感谢您的理解与配合。

合作联系方式

如有合作或其他相关事宜,欢迎通过以下方式与我们联系: