ICML 2025|如何凭「自动补全」实现100K生成3×加速?

内容摘要在当前大模型推理愈发复杂的时代,如何快速、高效地产生超长文本,成为了模型部署与优化中的一大核心挑战。随着 GPT-o3, DeepSeek R1 等具备 「超级上下文窗口」 能力的大模型持续刷新业界记录,百万甚至千万 Token 级别的推理

联系电话:400-962-3929

在当前大模型推理愈发复杂的时代,如何快速、高效地产生超长文本,成为了模型部署与优化中的一大核心挑战。随着 GPT-o3, DeepSeek R1 等具备 「超级上下文窗口」 能力的大模型持续刷新业界记录,百万甚至千万 Token 级别的推理任务已从研究话题迈入现实场景。然而,生成这些超长文本的背后,却隐藏着令人咋舌的计算成本 —— 长时间的等待、巨大的内存负担以及偶尔重复乏味的输出,严重制约了这些模型的真正潜力。

面对这一挑战,BIGAI NLCo 团队提出了一项全新的推理加速框架 —— TokenSwift,该工作已成功被 ICML 2025 正式接收!在这项研究中提出了一套可插拔、无损、高效的生成加速策略,专为 100K Token 级别的长文本推理而设计。在保持原始模型输出一致性的前提下,加速比达到 3 倍以上,极大提升了推理效率。

论文标题:TokenSwift: Lossless Acceleration of Ultra Long Sequence Generation

Arxiv: abs/2502.18890

Github: bigai-nlco/TokenSwift

Blog: TokenSwift/

 
举报 收藏 打赏 评论 0
今日推荐
浙ICP备19001410号-1

免责声明

本网站(以下简称“本站”)提供的内容来源于互联网收集或转载,仅供用户参考,不代表本站立场。本站不对内容的准确性、真实性或合法性承担责任。我们致力于保护知识产权,尊重所有合法权益,但由于互联网内容的开放性,本站无法核实所有资料,请用户自行判断其可靠性。

如您认为本站内容侵犯您的合法权益,请通过电子邮件与我们联系:675867094@qq.com。请提供相关证明材料,以便核实处理。收到投诉后,我们将尽快审查并在必要时采取适当措施(包括但不限于删除侵权内容)。本站内容均为互联网整理汇编,观点仅供参考,本站不承担任何责任。请谨慎决策,如发现涉嫌侵权或违法内容,请及时联系我们,核实后本站将立即处理。感谢您的理解与配合。

合作联系方式

如有合作或其他相关事宜,欢迎通过以下方式与我们联系: